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Outline
• Examples of single-crystalline 

semiconductor dielectric functions
• Temperature
• Strain
• Alloy composition
• Excitonic effects
• Film thickness
• Doping and carriers

4



All About Discovery!
New Mexico State University
nmsu.edu

Semiconductor Dielectric Functions

GaAs
2001

Ge
2016

5

1989
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Critical points in the dielectric function 
are related to interband transitions 

6

P. Y. Yu, M. Cardona: 
Fundamentals of Semiconductors. 
Springer, 2010Band structure of Ge
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Impact of Temperature
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Thermal expansion (small)
Electron-phonon interaction
 (dynamic disorder)
Red-shift and broadening of CPs
Theory exists (e-phonon coupling)

Carola Emminger, MS thesis (Linz)
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Impact of Strain and Stress

8
Continuum elasticity theory
Deformation potentials
Nalin Fernando, Appl. Surf. Sci. 421 (2017)

XRD (224) RSM



All About Discovery!
New Mexico State University
nmsu.edu

Impact of Composition: Ge-Sn Alloys

9

Impact of Sn:
• Redshift
• Broadening
• Increase of ∆1
• Same theory as 

temperature effects

N. Fernando, JVST B 36 (2018)

Fully strained
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Impact of Composition: Ge-Sn Alloys
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Nalin Fernando, SZ, Ph.D. thesis (2017).
Nalin Fernando, SZ, JVST B (submitted).

Direct gap

Indirect 
gap

Significant difference between pseudomorphic Ge-Sn alloys 
(grown on Ge) and relaxed alloys (grown on Si). Only relaxed 
Ge-Sn alloys become direct semiconductors (10% Sn).
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The Concept of an Exciton

11

Exciton: bound electron – hole pair

Mark Fox, Optical Properties of Solids (Oxford University Press, Oxford, 2010).
S.L. Pyshkin, L. Zv. Zifudin, J. Luminescence 9, 302 (1974).

Wannier exciton
(typical of inorganic semiconductors)

ee

h



All About Discovery!
New Mexico State University
nmsu.edu

Direct gap (E0) exciton in Ge

12Carola Emminger, MS thesis (Linz)
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Impact of Film Thickness: Ge on SiO2

13
Rigo Carrasco, SZ (unpublished).

Thick GOI (920 A Ge, 1380 A SiO2, bulk Si)
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GOI: Ge on insulator, produced by SmartCut process

92 nm Ge: looks like bulk

Thin GOI (290 A Ge, 1370 A SiO2, bulk Si)
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Possible confinement shift of E0 by 10-30 meV
(very hard to see at 300 K, need low temperature data)
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Impact of Film Thickness: Ge on SiO2

14Rigo Carrasco, SZ (APS March 2018).
J. Price and A.C. Diebold, JVST B 24, 2156 (2006)

Thick GOI: Similar to bulk Ge

92 nm29 nm

Thin GOI: Blueshift of E1 
and E1+∆1 (about 100 meV)

Observed blueshift (100 meV) in thin GOI 
hard to explain with strain of confinement 
arguments.
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Impact of Film Thickness: ZnO on Si

15

Kramers–Kronig consistent modeling with Tauc-Lorentz 
oscillators. 

N. Samarasingha, SZ (DPG 2018).

• Real and imaginary parts of dielectric function of ZnO 
layers on Si decrease monotonically with decreasing 
thickness.

• Explanation: Exciton dephasing at type-II QW interface.
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Impact of Thickness: ZnO on SiO2
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• Real and imaginary parts of dielectric function of ZnO layers on 
SiO2 also decrease monotonically with decreasing thickness.

• Explanation: Exciton dephasing at type-II quantum well interface.

N. Samarasingha, SZ (DPG 2018).



All About Discovery!
New Mexico State University
nmsu.edu

Lattice vibrations in thin ZnO on Si

17

• TO absorption in thin films is broader and redshifts.
• Explanation: Damping of oscillations, if thickness below mean free 

path.

N. Samarasingha, SZ (DPG 2018).
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Impact of Doping

18

• Doping: Impurities plus free carriers
• Dopant activation: How many impurities are ionized, produce free 

carriers?
• Impurities:

• Impurity (alloy) scattering due to lattice potential disorder
• Compensation doping (electrons plus holes)
• Strain effects if atomic radii of impurity and host differ

• Free carrier effects:
• Drude response
• Band gap renormalization (BGR)
• Band gap filling or Pauli blocking
• Burstein-Moss shift
• Reduction of excitonic effects 

• Photoexcitation: Equal number of electrons and holes add to 
existing carriers (from doping)



All About Discovery!
New Mexico State University
nmsu.edu

Dopant Activation (Ge:P)

19
C. Xu, C.L. Senaratne, J. Kouvetakis, and J. Menendez, 
APL 105, 232103 (2014)

Nearly complete donor 
ionization is possible in Ge:P, 
as long as all donors are in 
substitutional lattice sites 
(avoid donor clusters and 
interstitial donor atoms).

Ionization fraction only 
depends on quality of 
samples.

In situ doping methods 
preferred.

Plot FTIR-SE versus SIMS.
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Highly doped Si and Ge

20

Si:B Si:As Ge:In

Viña and Cardona, PRB, 1984 and 1986

E1 Exciton weakened E1 Exciton weakened
Broadening

Broadening
No amplitude reduction

E1 excitonic enhancement strong in Si, weak in Ge. 
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Excitonic Effects (doping)

21

• In some semiconductors, strong excitonic contributions 
to the E1 and E1+∆1 critical points. 

• Si and GaAs: Strong E1 excitons; Ge: Weak E1 excitons.
• Si: Strong dephasing at 6E20 P doping, when the 

Thomas-Fermi screening length (0.5 nm) is smaller than 
the excitonic radius (3 nm).

• Si: Strong reduction of E1 amplitude, but no shift.
• Ge: Not much amplitude reduction (band filling), but 

redshift and broadening due to impurities. 
• Excitonic screening changes the E1 phase angle (Si, Ge, 

alloys) due to impurities and alloy disorder.
• Compare Raman scattering in doped Ge at E1 resonance.
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Excitonic Effects: E1 phase angle

22

• Excitonic screening changes the E1 phase angle 
(Si, Ge, alloys) due to impurities and alloy disorder.

Similar reduction in E1 phase angle for Si and Ge.

Vina and Cardona, PRB, 1984 and 1986

Si Ge
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Impurity Scattering: Si and Ge

23
Vina and Cardona, PRB, 1984 and 1986

Static Disorder (alloy scattering):
Similar redshift and broadening as with temperature.

Si-E1

Ge-E1
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Strain Effects in doped Si

24

• Measurable if atomic radii of impurity and host differ

G.E. Jellison, Jr., et al., PRB 52, 14607 (1995).
P. Etchegoin, J. Kircher, M. Cardona, PRB 47, 10292 (1993).

Boron doping 2.3E21 cm-3

Out-of-plain strain ε=1.1%
ε1 changes (piezo-optic coefficients)
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Strain Effects in doped Ge

25

Covalent atomic radii (Phillips)

J. Menendez (ASU)
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Drude Model for Metals

26
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∆ε proportional to λ2 for small Γ (slope n/m).
Only ∆ε1 measurable for small Γ.

𝐸𝐸𝑃𝑃2 =
ℏ2𝑛𝑛𝑒𝑒2

𝑚𝑚𝜀𝜀0

H. Fujiwara and M. Kondo, PRB 71, 075109 (2005)
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Drude Response for doped Si

27

Clear reduction of ε1 below the direct gap due to free carriers.
Change in ε2 is due to impurity scattering, not free carriers.
Electrons contribute more than holes (smaller mass).
Doping with P and As has similar results (not shown). 

electrons holes

G.E. Jellison, Jr., et al., PRB 52, 14607 (1995).

~𝜆𝜆2
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Drude Response for doped ZnO and ITO

28H. Fujiwara and M. Kondo, PRB 71, 075109 (2005)

Drude contribution 
to ε1 and ε2

Linear in λ2

Linear in n

100% activation

EP
2 depends on N



All About Discovery!
New Mexico State University
nmsu.edu

Many-Body Effects

29

• Band gap renormalization (BGR)
• Band gap is lowered at high carrier density
• Measurable with photoluminescence

• Band filling or Pauli blocking
• Band filling affects absorption measurements

• Burstein-Moss shift
• Absorption threshold affected by both BGR and band filling

• Mott transition: Individual excitons versus electron-hole liquid (EHL) at 
rs~5.

EF EF

PL absorption
PL absorption

EF

N=0
BGR

Band Filling
Burstein-Moss

CB

VB

High doping

Not important in 
ellipsometry
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Band gap filling

30

• Filled electron and hole states reduce absorption 
probability by a factor 1-fe-fh, where f is the population of 
the state.

• Also known as Pauli blocking.
• Bleaches the absorption, spectral hole burning. 
• Purely quantum mechanical effect (Fermi statistics).
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Burstein-Moss Shift: n-type InSb

31
E. Burstein, Phys. Rev. 93, 632 (1954).
T.S. Moss, Proc. Phys. Soc. (London) B 67, 775 (1954).
M. Grundmann, The Physics of Semiconductors 

Absorption threshold 
increases, because CB bottom 
is filled with electrons (Pauli 
blocking).  

∆𝐸𝐸 = 𝐸𝐸𝐹𝐹 − 4𝑘𝑘𝑘𝑘 − 𝐸𝐸𝐶𝐶𝐶𝐶 1 +
𝑚𝑚𝑒𝑒

𝑚𝑚ℎ
≈

ℎ2

8𝑚𝑚𝑟𝑟
𝑛𝑛 �2 3
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Burstein-Moss Shift in ZnO and ITO

32H. Fujiwara and M. Kondo, PRB 71, 075109 (2005)

Band gap increases with increasing dopant concentration.
Band gap renormalization (decrease) PLUS band filling (increase
Shift is proportional to n2/3 (many-body effect).
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E1 gap in highly doped Ge:P

33
C. Xu, NF, SZ, JK, J. Menendez, PRL 118, 267402 (2017)

×

×

Phase-filling singularity
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Phase-filling singularity in highly doped Ge:P

34C. Xu, NF, SZ, JK, J. Menendez, PRL 118, 267402 (2017)

×

×

Phase-filling singularity

E1

E1+∆1

E1

E1+∆1

77 K
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E1 CP parameters in highly doped Ge:P

35C. Xu, NF, SZ, JK, J. Menendez, PRL 118, 267402 (2017) 35

Exciton
screening

Pauli blocking

Impurity broadening

?????
∆1 also changes in alloys

E1 redshift shown earlier
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Dielectric functions of semiconductors depend on 
many parameters:
• Temperature
• Strain
• Alloy composition
• Doping
• Free carriers
• Excitonic effects
• Film thickness

Summary

36
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Band-gap renormalization (BGR)

39

• Modified Rydberg units make BGR independent of material:
• Excitonic Rydberg R (exciton binding energy: mass m* + screening ε)
• Excitonic Bohr radius aB
• Carrier separation rs: n−1=(4π/3)(rsaB)3

• Reduced density: N=naB
3; reduced temperature: T=kT/R.

• Exchange energy:
• ∆Eg(exchange)=−1.22/rs (single isotropic valley), proportional to n1/3.
• Modify expression for multiple or anisotropic valleys
• Ge at n=4.3E19cm−3: ∆Eg(exchange)=−0.02 eV (observed: −0.07 eV)
• Electrons in L-valley of Ge do not impact direct band gap BGR, because wave 

functions at L and Γ do not overlap. Exchange energy between electrons in 
different valleys vanishes. Compare Kalt&Rinker, PRB 45, 1139 (1992). 

• Summary:
• Band gap renormalization in doped semiconductors is not important, 

because it is smaller than the impurity shifts observed by Vina.
• BGR is the dominant influence in photoexcited semiconductors (PL 

experiments). 

C. Haas, Phys. Rev. 125, 1965 (1962). 
P. Vashista and R.K. Kalia, Phys. Rev. B 25, 6492 (1982).
R. Zimmermann, phys. stat. solidi (b) 146, 371 (1988).  
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Band-gap renormalization (BGR)

40

P. Vashista and R.K. Kalia, Phys. Rev. B 25, 6492 (1982).
A. Forchel, H. Schweizer, and G. Mahler, PRL 51, 501 (1983).
R. Zimmermann, phys. stat. solidi (b) 146, 371 (1988).  
S.C. Jain and D.J. Roulston, Solid-State Electron. 34, 453 (1991).

Ge

Si
sSi

EHP

EHP

∆𝐸𝐸𝑔𝑔 𝑛𝑛,𝑇𝑇 =

−
3.24𝑟𝑟𝑠𝑠

− �3 4

1 + 0.0478𝑟𝑟𝑠𝑠3𝒯𝒯2 �1 4

Photoluminescence
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Band gap lowering in Ge:P

41

Band gap collapses in Ge:P and Ge:As. (Band filling subtracted.)
Eind, E0 and E0 collapse at about the same rate, nearly linear in doping 
density, independent of temperature. Depends on impurity density, 
independent of n.
Is this collapse due to free carriers or due to impurity scattering 
(Viña)?

C. Haas, Phys. Rev. 125, 1965 (1962). Near-gap IR absorption
J. Menendez et al., 2015 APS March meeting



All About Discovery!
New Mexico State University
nmsu.edu

Band gap collapse in Si

42

Is this collapse due to free 
carriers or due impurity 
scattering (Viña-like)?
Linear dependence of redshift with 
dopant density suggests impurity 
scattering. 

E1 and E2 show the same trend. 
Band gap renormalization should 
depend on the valley contributing 
to the CP.

D.E. Aspnes, A.A. Studna, and E. Kinsbron, PRB 29, 768 (1984).

E1

E2
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